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This paper concerns the stability characteristics of laminar natural convection 
in external flows. Until recently, very little was known about such stability 
because of the inherent complexity of temperature-coupled flows and because 
of the complicated mechanisms of disturbance propagation. In  this work the 
stability of the laminar natural convection boundary layer is examined more 
closely in an attempt to predict the experimental results recently obtained. In  
particular, it  is shown that an important thermal capacity coupling exists be- 
tween the fluid and the wall which generates the flow. This thermal capacity 
coupling is shown to have a first-order effect for particular Grashof-number 
wave-number products. Solutions are obtained for a Prandtl number of 0.733 
and several values of relative wall thermal capacity. These solutions indicate 
the important role of this wall coupling. In  particular, the results predict the 
experimental data previously obtained. 

In  addition, solutions with ‘zero wall storage’ are obtained for a range of 
Prandtl numbers from 0.733 to 6.9. The relative disturbance u-velocity and 
temperature amplitudes and their phases are shown for Pr = 0.733 and several 
wall-storage parameters, and for Pr = 6.9 with zero wall storage. A comparison 
between the disturbance temperature distribution and the data obtained from 
a recent experimental investigation shows close agreement when the thermal 
capacity of the wall is taken into account. 

In  the appendix,it isshown andwall-coupled 
boundary conditions the flow is unstable at a lower Grashof number for two- 
dimensional disturbances than i t  is for three-dimensional disturbances. This 
result has been supported by the recent experimental observations. 

1. Introduction 
The stability of the laminar fluid flows has been under investigation since the 

time of Lord Rayleigh. More recently, the laminar boundary layer stability has 
been analysed in an attempt to predict the transition from laminar to turbulent 
flow and also to gain a better understanding of the mechanism of turbulence. 

The stability characteristics of the forced-flow Blasius boundary layer were 
successfully determined by the theoretical analyses of Tollmien (1931), Schlich- 
ting (1933) and Shen (1954). The agreement between the calculations and the 
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experimental data of Schubauer & Skramstad (1948) shows that, for this forced- 
flow case at  least, the linearized small-disturbance theory is applicable for pre- 
dicting the location and behaviour of the disturbances in the boundary layer 
around the neutral-stability point. 

It is only comparatively recently that the stability of the natural convection 
boundary layer has received attention. This results perhaps from its increased 
complexity and also because the applications are more subtle. In  the first analysis, 
by Plapp (1957), the comparable Orr-Sommerfeld type equations were formu- 
lated. These equations include the effect of temperature-velocity disturbance 
coupling, through the buoyancy term in the momentum equation. Estimates of 
conditions for neutral stability were made for a Prandtl number of 0.72 (air) for 
the isothermal-wall base-flow case. In  obtaining these solutions, however, the 
temperature effect (coupling) was neglected. 

The equations of Plapp (1957) were later rederived by Szewczyk (1962), who 
also used an asymptotic technique to obtain solutions for a Prandtl number of 10. 
The base flow was that of an isothermal wall and again the temperature coupling 
was neglected. Expansions were made about both the inner and outer critical 
layer. These calculations indicated that the flow is more unstable in the region 
of the outer critical layer. However, the stability limits predicted in both studies 
are significantly different from those based upon experimental data, including 
those obtained by Szewczyk, using water. 

The first numerical solution of the stability characteristics of the natural con- 
vection boundary layer was obtained by Kurtz & Crandall(l962) for Pr = 0.733. 
The base flow was that of an isothermal wall and again the effects of temperature 
coupling were neglected. The results of these calculations are significantly 
different from those of Plapp (1957). 

The first solution which included temperature-coupling was obtained by 
Nachtsheim (1963). The velocity and temperature base flow profiles were those 
of an isothermal wall. The temperature-coupling between the momentum and 
energy disturbance equations was included; the complete set was solved. Solu- 
tions were obtained both with and without this temperature-coupling for 
Prandtl numbers of 0.733 (air) and 6-7 (water). A comparison between the 
coupled and uncoupled solutions at  the same Prandtl number indicates that the 
effect of the temperature-coupling is very pronounced for lower values of the 
wave-number Grashof-number product. For the higher Prandtl number case, 
the inclusion of temperature-coupling shifts the predicted neutral-stability point 
to a lower value of the local Grashof number a minimum of a factor of lo4. For 
the lower Prandtl number case, the shift is considerably smaller; however, for 
small wave-numbers (i.e. long wavelength disturbances) the coupling shifts the 
neutral curve to lower values of the minimum (or critical) Grashof number by as 
much as a factor of 50. These are tremendous differences in the prediction of the 
first point of laminar instability. 

Prior to 1966 no experimental data were available to assess critically the applic- 
ability of the theory for natural convection flows nor to determine the importance 
of temperature-coupling. The experiments of Eckert & Soehngen (1951), 
Szewczyk (1962) and others were studies of the onset of naturally occurring 
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instability. In  this type of instability the very small naturally occurring dis- 
turbances must be amplified by the boundary layer until they are large enough 
to be observed. As a result the ‘neutral’ Grashof number determined from such 
measurements depends strongly upon the magnitude of the ambient disturbances 
and also on the sensitivity of the instrument used to observe the boundary-layer 
fluctuations. Since the disturbances have undergone considerable amplification 
before they can be observed, it is impossible in this type of study to determine the 
location at which the flow is neutrally stable. The early attempts to introduce 
artificial disturbances in the boundary layer and observe their subsequent decay 
and reamplifications as they travel upstream had not been successful. Birch 
(1957) used a wire which was subjected to square-wave current pulses to intro- 
duce artificial disturbances. The frequency of the most unstable disturbances 
was correlated; however, Gartrell (1959), using the same apparatus, obtained 
different results. 

A preliminary study, using artificially induced disturbances was under- 
taken by Colak-Antic (1964). The disturbances were introduced by means of 
an electricalIy pulsed wire. Because of a lack in the sensitivity of the measur- 
ing apparatus, no measurements were made in the region where the flow was 
neutrally stable. 

The experimental study of Polymeropoulos ( 1966) provided the first carefully 
controlled experimental data. The stability of the uniform-flux boundary layer 
over a vertical flat plate in pressurized nitrogen was investigated. Controlled 
artificial disturbances were introduced by means of a vibrating ribbon, a tech- 
nique used successfully by Schubauer & Skramstad (1948) in forced flow. The 
decay and amplification characteristics of disturbances as they travelled down- 
stream were observed by means of an 8 in. Mach-Zehnder interferometer. By 
such techniques points of neutral stability could be clearly determined for 
various disturbance frequencies and wavelengths. 

The results of this study (see Polymeropoulos & Gebhart 1967) are in general 
agreement with the coupled isothermal-wall results of Nachtsheim (1963). In  
particular, the data show the ‘nose’ at lower wave-numbers which was predicted 
by the temperature-coupled solution of Nachtsheim (1963). 

In  order to assess the difference in stability characteristics between uniform 
temperature and uniform-flux base flows, Polymeropoulos & Gebhart (1966) 
formulated the appropriate Orr-Sommerfeld type equations for the uniform-flux 
case. The uncoupled solution was obtained for a Prandtl number of 0.72. As in 
the isothermal-wall case, the uncoupled solution did not predict the ‘nose’ 
behaviour. 

At the outset of this investigation, then, no information was available con- 
cerning the effect of temperature-coupling on the theoretical stability of other 
base flows such as, for example, the equally important uniform-flux boundary 
layer. This information is desirable both from a general point of view and also 
to provide a comparison for the experimental data of Polymeropoulos & Gebhart 
(1967). For the latter, it  became apparent that it would be necessary to include 
the effects of the thermal storage characteristics of the heated wall used to 
generate the flow. This coupling between the fluid disturbance fluctuation and the 
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wall thermal capacity proved to have a pronounced first-order effect on the 
laminar stability predictions. 

In  addition, little information is available in the literature concerning the 
effect of Prandtl number on the laminar stability characteristics. An attempt at 
predicting the effect of Prandtl number was made by Sparrow, Tsou & Kurtz 
(1965), using the program developed by Kurtz & Crandall(l962). The minimum 
(or critical) Grashof number for neutral stability was calculated for several 
Prandtl-number cases. The effect of temperature coupling in the disturbance 
equations was neglected. The results of Nachtsheim (1963), which appeared 
previously, showed that this temperature-coupling is important, especially in 
predicting the critical Grashof number. In  view of this, and also in preparation 
for an experimental study which will be reported later, the effect of Prandtl 
numbers from 0.733 to 6.9 was also investigated. 

2. Theoretical analysis 
Consider the laminar natural convection flow over a vertical flat plate with the 

co-ordinate system shown in figure 1. The base flow is assumed to be that resulting 
from a uniform surface heat flux at  the inner boundary, neglecting viscous dissi- 
pation and compressibility effects (other than the buoyancy term in the momen- 
tum equation). For the stability analysis, the base flow is further assumed to be 
one-dimensional in that the derivatives of the base-flow quantities with respect 
to x are much smaller than those with respect toy. Hence, the base-flow quantities 
in the disturbance equations are considered to be functions of y only. The dis- 
turbance quantities are taken as small perturbations of the base-flow quantities. 
By a method similar to that of Squire (1933), it can be shown that the flow will 
be most unstable for two-dimensional disturbances (see appendix.) As a result, 
it  is assumed that the disturbance quantities are functions of x ,  y and 7 only. 
Using a development similar to that of Polymeropoulos & Gebhart (1966), it 
can be shown that for the uniform-flux case the disturbance equations can be 
written as 

where 

and 

an an d2u at 
-+U-+w- = vv2a+gp- ,  a? ax a g  aY 

The continuity equation can be satisfied by introducing a disturbance stream 
function, $, such that u = a$/ay and v = - a$/ax. Now any physical disturbance 
which is bounded can be represented by a Fourier series in which the wave- 
number (or frequency) of each term is an integer multiple of the zero-order term. 
It has been demonstrate experimentally by Polymeropoulos (1966), and can be 
concluded from the neutral curve, that for wavelengths which can be observed 
experimentally (i,e. wavelengths which are not too long), the first harmonic 
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FIGURE 1. Co-ordinate system. 

would be highly damped.? In  view of this, it is sufficient to consider only one 
term in the series-that is, to examine whether a particular wavelength at a 
particular frequency is amplified or attenuated.$ Thus the form of the dis- 
turbance can be defined as 

where 7 and 3 are complex amplitude functions, Re@) is the wave-number in the 
x direction [Re@) = 2n-/A], and Re@) is the frequency [Re@) = 2nf]. The 

t For very long wavelengths, the first harmonic may be in the amplified region of the 
neutral curve. Hence if this harmonic is present in the initial disturbance, it too will be 
amplified. 

This corresponds to obtaining solutions in terma of normal modes. 
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imaginary parts of E and p give rise to amplification or attenuation of the dis- 
turbance wave. It is apparent that if Im(E) < 0 the wave will amplify with 
increasing x ,  while if Im ( p )  > 0 the wave will amplify with increasing time. For 
the special case when Im(E) = Im(p)  = 0, the wave will be neutrally stable, 
neither amplifying nor decaying. 

Equations (1) and (2) can be reduced to two ordinary differential equations by 
means of ( 3 )  and the following substitutions: 

G“ = 5(Gr*/5):, r = TU*/S, 

S = 5x/G”, CD = $/O*S, 

a = as, 

$ = pS/U*, 

.$ = ~ / 6 ,  

7 = Y P ,  

U” = vG*2/5x, 

F’ = U/U*,  

where 

and q” is the heat flux at the boundary, $ is the coefficient of thermal volumetric 
expansion, g is the gravitational acceleration, Ic is the coefficient of thermal 
conductivity, v is the kinematic viscosity and x is the distance from the leading 
edge. With the exception of the sign of H ,  these quantities are identical to those 
used by Polymeropoulos & Gebhart (1966). By using the negative of the con- 
ventional normalization for the temperature in the base flow, the resulting Orr- 
Sommerfeld equation will have the same form for the uniform flux and the iso- 
thermal-wall cases. This normalization will also give rise to base flow solutions for 
the two cases which can be more easily compared. 

With the above substitutions, (1) and (2) can be reduced to 

(4) 
- i  

aG* 
(F’ - $/a) (CD” - a2@) - F”’CD = ~ ( OiV - 2a2@,” + a4CD + s’), 

a%). ( 5 )  

It should be noted that even though (4) and (5) are identical to the equations 
derived by Nachtsheim (1963) for the isothermal wall case, the base-flow 
velocity and temperature profiles will be different for the uniform-flux case. In 
addition, the surface-boundary conditions for the disturbances will, in general, 
be different for the two cases. As a result, the neutral curves for the two cases 
will also be different. It will also be shown subsequently that the disturbance- 
boundary conditions at the surface play a significant role in determining the 
shape of the neutral curve, and hence must be examinedin some detail. This is the 
question of the coupling of the disturbances to the surface thermal capacity. 
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Equations (4 )  and (5) together constitute a sixth-order complex ordinary 
differential equation and six complex boundary conditions are required. The no- 
slip condition at  the wall requires that 

at 7 = 0, @ = a' = 0. 

In  addition, in order to keep the disturbance energy finite, the disturbance 
velocities, disturbance temperature (and consequently the disturbance flux) 
must vanish as 7 -+ co. Thus 

as 7+00, @'-to, @'-to, s+O. 

The boundary conditions on the disturbance temperature and/or disturbance 
flux at the surface require further consideration. For the proper boundary con- 
dition at the wall, it is necessary to consider the thermal capacity of the heated 
element used to generate the flow. Clearly there are two limiting cases. If the 
wall is truly constant temperature (e.g. a wall with a very large thermal capacity 
and large thermal capacity:and large thermal conductance normal to the surface) 
then flow disturbances will cause no surface-temperature disturbance. Therefore 
the proper disturbance-temperature boundary condition would be 

q = 0, s = 0 (high-thermal-capacity wall). 

If, in addition, the wall has large thermal conductance parallel to the surface, 
the base flow will be that of an isothermal surface. 

If, on the other hand, the wall has a truly constant energy input along its length 
(i.e. negligible internal conduction parallel to the surface) then the base flow will 
be that of a uniform flux wall. If the wall has, in addition, a zero thermal capacity, 
(e.g. a very thin electrically heated foil) the proper disturbance boundary con- 
dition is zero disturbance in the surface heat flux. That is 

a t  7 = 0, s' = 0 (zero thermal capacity wall). 

It was found that the limiting cases s = 0 and s' = 0 were not sufficient to 
explain, e.g. the experimental results of Polymeropoulos & Gebhart (1967). 
Based on the results of Gebhart (1963) for transient natural convection and on 
the implications of Dunn & Lin (1955) for forced-flow stability, it  was expected 
that the physical properties of the electrically heated foil used to generate the 
base flow in the study of Polymeropuolos & Gebhart (1967) and in any similar 
study would require a more realistic surface boundary condition for the dis- 
turbance temperature and the disturbance flux. This is now known to be neces- 
sary even though i t  had been experimentally verified that the base-flow wall 
temperature distribution for thin electrically heated foils corresponds closely 
to that predicted by theory for a uniform flux wall. There is inevitably a non- 
negligible thermal capacity effect. 

In  order to establish the proper boundary conditions, consider an element of a 
thin foil such as that used in the experimental study. For a thin foil the conduc- 
tion in the vertical direction can be neglected. 

An energy balance on an element (shown in figure 1) is written 
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where pe is the electrical resistivity of the foil, I is the foil current, T is the base- 
flow temperature and t is the disturbance temperature. The zero subscript indi- 
cates that the derivatives are evaluated at y = 0. Subtracting the steady base 
flow quantities from (6) yields the relation 

Equation (7)  can be normalized in the same way as (4) and (5). The result is the 
appropriate disturbance temperature boundary condition, 

where (9) 

and x, is the vertical location of the neutral stability point. (x, can be determined 
from the value of G* for neutral stability.) The Q*, defined by ( Q ) ,  is a thermal 
capacity term similar to that defined by Gebhart (1963) for the transient con- 
vection case.7 

Equation (8) contains the two extreme disturbance boundary conditions, 
since s(0) and s’(0) are bounded. A foil with zero thermal capacity corresponds to 
Q* = 0. Hence (8) requires that s’(0) = 0, which is the pure uniform flux boundary 
condition. If, on the other hand, the foil has a very large thermal capacity com- 
pared to that of the fluid, then Q*+m and (8) reduces to the condition that 
s( 0)  = 0, corresponding to the isothermal-wall disturbance temperature- 
boundary condition. It should be noted that even for the latter case, the base 
flow may still conform to the uniform flux solution, as in the study by Poly- 
meropoulos & Gebhart ( 1967), because of negligible streamwise conduction in the 
foil. 

3. Method of solution 
Equations (4) and (5) were numerically integrated on a Control Data 1604 
computer using a technique similar to that ofNachtsheim (1963). These equations 
constitute a two-point boundary-value problem with two unknown eigenvalues. 
The disturbance boundary conditions at  infinity were transformed into equivalent 
boundary conditioiis at the edge of the base-flow boundary layer since the analy- 
tical solution to the disturbance equations could be obtained in this outer region 
(see Nachtsheim 1963). This outer solution was matched to the inner solution to 
provide the complete solution. 

In  order to start the step-by-step integration to obtain the inner solution, 
three complex boundary conditions must be guessed in addition to the eigen- 
values, in order to begin the integration. Since the equations are linear and 
homogeneous, one of these boundary conditions can be specified arbitrarily 

-f Typical values of &* for various fluids are shown in the table. The effect of this 
boundary condition on stability will be shown in the results which follow. 
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(except that it must be finite and non-zero). This choice will simply fix the size of 
the solution. For this purpose, it is convenient to specify that W’(0) = 1. Guesses 
are then made for the values of W’(0) and s(0) [or s’(O), depending upon the 
magnitude of &*I. It is also necessary to guess one eigenvrtlue pair. In  the solu- 
tions obtained by Nachtsheim (1963) and Polymeropoulos & Gebhart (1966), the 
real and imaginary parts of the complex wave velocity, c (where c = P/a), were 
chosen as eigenvalues to be determined for particular preset values of a and G*. 
The solution obtained for a given a,, G* set would yield a non-zero value of the 
imaginary part of c indicating that the disturbance would either amplify or 
decay with time. This procedure required the complete set of equations to be 
solved several times with different values of G* until the imaginary part of c 
changed sign. Then Im ( c )  could be plotted as a function of G* and the value of 
G* determined which would yield Im (c )  = 0. 

At best this technique requires at  least two complete solutions and in general 
at least three of four. An additional solution is required for the proper G* to 
determine the eigenfunctions at  the neutral stability point. 

In  order to eliminate this difficulty, Im (a) and Im (p) were both set equal to 
zero identically. The eigenvalues are then Re (a) and Re (p). Thus for a given 
Prandtl number and G* parameter, a solution was obtained for 

Im (a)  = Im (p) = 0. 

Each solution which was obtained by this method represented a solution of the 
neutral stability equations. 

The integration was accomplished by a sixth-order Adams integration scheme 
which used a Runge-Kutta integration to generate the required back points. A 
step size of Ay = 0.1 was used. The effect of step size was checked by recomputing 
some of the results with b y  = 0-05. The new eigenfunctions and eigenvalues 
agreed with the old values to better than 0.05%. As a result the step size of 
AT = 0.1 was used in all calculations. 

Each new solution was obtained by using the starting values from the previous 
solution and incrementing the value of G* by an amount of AG*. If a satisfactory 
solution was not obtained within a preset number of iterations (usually 10-20) 
then the value of AG* was halved and the procedure was repeated. Typical values 
of AG* are 5 in the range of G* < 120. As G* became larger the allowable values 
of AG* were reduced. 

For lower values of aC*Pr and aG*, single precision arithmetic was satis- 
factory for convergence. For higher values of these parameters, however, 
double precision was used to obtain proper convergence, in order to obtain the 
correct eigenfunctions. A Newton-Raphson scheme was used to correct the 
guesses of the starting values and the eigenvalues. The derivatives for this 
scheme were obtained by differentiating (4) and (5) with respect to the starting 
values and eigenvalues, a technique which was also used by Nachtsheim (1963). 

The equations for the derivatives with respect to W”(0) and s(0)  or s’(0) are 
identical to those derived by Nachtsheim (1963). The boundary conditions for 
the later equations will be different, however, because of the inclusion of the 
thermal capacity of the plate. If Q* is small, then s’(0) is also small. For this 
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circumstance, it is appropriate to guess the value of s(0) and determine s’(0) from 
(8). If s(0) = (T then the appropriate boundary conditions for the derivative 
equations with respect to (T are 

@,(O) = 0;(0) = @:(0) = q ( 0 )  = 0 ,  

s,(O) = 1, 

s&(O) = -iQ*G*’P. 

If, on the other hand, Q* is large, then s(0)  is small. In this case, the value of s’(0) 
is guessed to be r ~ ,  and the value of s(0)  is obtained from (8). For this case the 
boundary conditions for the derivative equations are 

and 

(DJO) = @&(0) = CD,6(0) = CDf(0) = 0, 

s;(0) = 1 

~ ~ ( 0 )  = i/Q*G”’P. 

Because of a different choice of eigenvalues, the derivatives of (4) and (5) with 
respect to the eigenvalues will be different from those of Nachtsheim. These 
equations, which must also be integrated are 

P (F’ -/?/a) (@I - a20, - 2aCD) + - (CD” - aW) - F”’0, 
a2 I 

i 
a2G” 

+ __ ( W  - 2 a 2 ~ ”  + E ~ C D  + st) 
and 

i i 
(8; - a”, - 2as )  + ~ (8’’ -a%), P (F’ - P/a)s, + --- s - a’@, = - __ 

a2G* Pr a2 aG* Pr 
( 1 1 )  

with the boundary conditions 

@,((I) = Qh(0) = @;(0) = @:(o) = s,(O) = sh(0) = 0 

(F’ - P/a) (a$ - a2(D& - - (0’’ - aw,) - F’”CD., = - ~ ((Df - 2a2(D; + a4(Dp + 8;) 

(F’-/3/a)sg-H’CDDB-- = -~ (s; - a2sg) 

@&O) = @,ti(O) = a q 0 )  = q ( 0 )  = 0 

and 
1 1. 

a aG” 
( 1 2 )  

( 1 3 )  
s i 
a aG*Pr 

and 

with the boundary conditions 

and 

As in the method of Nachtsheim, these derivative equations must be integrated 
along with the main disturbance equations. It is apparent that by specifying 
both Im (a)  and Im (p) to be zero, it is necessary to integrate an additional set of 
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six first-order complex equations, making a total of 60 real first-order equations 
which must be integrated. If the eigenvalues were taken as Re ( c )  and Im (c), as 
in the case of Nachtsheim (1963), the Cauchy-Reimann equations could be used 
to reduce this number to 48. Since this set would have to be integrated several 
times in order to obtain a neutral solution however, it is expedient to use the 
present method. 

4. Results 
The results which were obtained from the numerical integration were curves 

of neutral stability for the uniform flux base flow, including temperature coupling, 
for various values of Q* (relative thermal capacity of the wall) and Prandtl 
number. A curve divides the (a,  G*) or (p, G*) plane into regions in which a 
particular disturbance (characterized by the a, G* co-ordinates) will be either 
stable or unstable. 

The results for a Prandtl number of 0.733 (corresponding to air) are shown in 
figures 2 and 3. The widely diverse character of the neutral curves for various 
values of &* is readily apparent. For reference, the uncoupled solution of Poly- 
meropoulos & Gebhart (1966) for the uniform flux base flow is also shown. 

These results predict that the thermal capacity of the wall will have a pro- 
nounced effect on the stability of the flow. For finite but non-zero values of &*, 
the boundary condition depends upon the values of G* and p. From (8) it can be 
seen that as G*+O, the boundary condition becomes asymptotic to s'(0) = 0. 
Hence it is only for the intermediate values of G* that the more precise boundary 
condition departs from the limiting cases. 

In  addition, the effect of Prandtl number on the limiting case of a purely uni- 
form flux wall of zero relative thermal capacity [i.e. Q* = 0 and s'(0) = 01 was 
investigated. The results of these calculations, shown in figures 4 and 5 ,  show 
entirely different limiting behaviour (for s'(0) = 0)  as a (and p) -+ 0. 

The eigenfunction information obtained from the integrations for Pr = 0.733 
and various values of Q* and for higher Prandtl number with &* = 0 show many 
interesting characteristics and trends. Some of this information is sharply a t  
variance with the point of view and method of analysis used in many early 
estimates of approximate solutions of the Orr-Sommerfeld equations. Certain 
aspects of the results are discussed below in the terms of the calculated velocity 
and temperature disturbance distributions. 

The relative neutral disturbance velocity and temperature distributions can 
be obtained from the eigenfunctions as follows: 

and 
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FIGURE 3. Frequency neutral curve for uniform flux base flow and P r a n d t l  
number = 0.733. 
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where the phase angles O,, 0, and 0, are defined by 

and 

1.0 
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0.4 

0.3 
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0.1 

0 

0, = tan-l (@im/@Le), 
0, = tan-l (QIrn/QRe) 

0, = tan-l(sIm/sRe). 

I I I 1 1 1 1 1 

pr = 6.9 

Pr = 5.0 

Pr = 3.0 P 

I 

G* 
FIGURE 4. Effect of Prandtl number on the wave-number neutral curve for uniform flux 

base flow and s' (0)  = 0 (&* = 0). 

Since the disturbance equations are linear and homogeneous, the absolute 
magnitude of the disturbances cannot be obtained. As a result, these disturbance 
amplitude equations are normalized by their maximum values so that 

The neutrally stable relative disturbance u-velocity and disturbance tempera- 
ture distributions across the boundary region are plotted in figures 6 to 10 for 
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various values of Pr, Q*, a and G*. These results show clearly the effect of the 
temperature boundary condition. For a truly uniform flux wall (Q* = 0) the 
temperature disturbance remains large near the wall, as shown in figures 6 and 
7.  Figures 7 to 10 indicate that the disturbance temperature distribution is only 
a weak function of the G* parameter for a Prandtl number of 0.733, although it is 
a strong function of the Prandtl number, as shown by figures 6 and 7.  

c* 
FIGURE 5. Effect of Prandtl number on the frequency neutral curve for uniform flux base 

flow and s'(0) = 0 (&* = 0). 

The disturbance u-velocity distributions depend strongly upon both the 
Prandtl number and Grashof parameter, G*. The distributions for the lower 
values of G* show a single inner peak and another peak occurring at  the edge 
and just outside the thermal boundary layer for Pr = 0.733 and Pr = 6.9, 
respectively. For higher values of G*, for Pr = 0-733, a third local maximum 
occurs in the disturbance velocity distribution. For Pr = 0.733 the maximum 
disturbance velocity occurs at the approximate location of either the outer 
critical layer or the inflexion point of the base flow (except for the case of G* = 167 
with s(0) = 0, figure 10). The maximum in the velocity distribution occurs at 
about the same location as the disturbance temperature maximum (except for 
the case noted). For the solutions with Q* = 0 (corresponding to s'(0) = 0) it  
can be seen that the u-velocity maximum occurs near the outer critical layer. As 
Q* increases, this behaviour changes. For Q* = cx) (corresponding to s(0) = 0) 
and Pr = 0.733, it can be seen from figure 10 that the disturbance velocity maxi- 
mum becomes fixed approximately at the inflexion point, regardless of the 
location of the outer critical layer. 
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The influence of the inner critical layer can also be observed in these figures. 
A second local maximum occurs in the vicinity of the inner critical layer. The 
magnitude of this local maximum depends upon the value of G*. For G* suffici- 
ently large, figure 10 shows that this maximum can actually exceed the value of 
the outer critical layer (or inflexion point). The fact that the location does not 
correspond exactly to the inner critical layer is presumably due to the tempera- 
ture coupling. 

1 .o 2.0 3.0 4.0 5.0 6.0 

7 

FIGURE 6. Theoretical disturbance amplitude distributions for Prandtl number = 6.9, 
uniform flux base flow and ~'(0) = 0 (&* = 0). Su and St indicate the outer edges of the 
velocity and thermal boundary layers. 
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For Pr = 0.733 and for the extreme of Q* = 0, the disturbance temperature 
distribution has a maximum which occurs inside the outer critical layer. For 
small values of Q*, however, the location shifts toward the inflexion point loca- 
tion. This shift is apparent even for Q* = 0.003. For Q* = 00, the locations are 
essentially coincident. 

The various disturbance temperature distributions show very clearly the im- 
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FIGURE 7. Theoretical disturbance amplitude distributions for Prandtl number = 0.733, 
uniform flux base flow and s’(0) = 0 (&* = 0). Vertical lines indicate the locations of the 
critical layers. 6u and St indicate the outer edges of the velocity and thermal boundary 
layers. 
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portance of the thermal boundary condition on the solutions of the stability 
equations. For a wall with low thermal capacity, the disturbance temperature 
at  the wall in air can have an amplitude of up to 80 yo of its maximum value, in 
the base flow corresponding to that of a uniform flux wall. In many applications 
this would amount to a very important surface temperature disturbance effect. 

The phase angle of these disturbance quantities was computed from (17) to 
(19). The results are shown in figures 11 and 12 for a Prandtl number of 0.733 and 
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4 m 
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I I I I 

1.0 r i f n n  I I I I 1 
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I I  I I I 
0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 

7 
FIGURE 8. Theoretical disturbance amplitude distributions for Prandtl number = 0.733, 
uniform flux base flow and Q* = 0.003. Vertical lines indicate the locations of the critical 
layers. 6u and 6t indicate the outer edges of the velocity and thermal boundary layers. 
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figure 13 for a Prandtl number of 6.9. For the air case, it  can be seen that the 
disturbance temperature phase distribution depends slightly upon the tempera- 
ture boundary condition. For both boundary conditions, i.e. for large and zero 
relative thermal capacity, and for a range of G", the disturbance temperature 
undergoes a gradual phase change of approximately $-wave across the thermal 
boundary layer for Pr = 0.733. The phase distribution for the disturbance 
temperature with a Prandtl number of 6.9 and s'(0) = 0 shows a similar be- 

= 70 

= 138 

?1 

FIGURE 9. Theoretical disturbance amplitude distributions for Prandtl number = 0.733, 
uniform flux base flow and &* = 0.03. Vertical lines indicate the locations of the critical 
layers. 6u and St indicate the outer edges of the velocity and thermal boundary layers. 
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haviour. Again, the relative phase change across the thermal boundary layer is 
approximately )-wave. The temperature phase distributions are discontinued 
beyond 7 = 4 for Pr = 0.733 and 7 = 3 for Pr = 6.9. For values of 7 greater than 
these the disturbance temperature distribution has gone to zero. The remaining 
temperature eigenfunctions consist of computer noise and hence a calculated 
phase angle is irrelevant. 

0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 
7 

FIGURE 10. Theoretical disturbance amplitude distributions for Prandtl number = 0.733, 
uniform flux base flow and a ( 0 )  = O(Q* = co). Vertical lines indicate the locations of the 
critical layers. 8% and I% indicate the outer edges of the velocity and thermal boundary 
layers. 

43-2 
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The disturbance u-velocity phase distribution is also similar for both boundary 
conditions with Pr = 0.733. These distributions show that the disturbance 
wvelocity undergoes a rather sudden phase change of more than + wavelength 

I -- I I I I I I 
0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 

2T ' 
r 

I I 1 I 1 I 

/ 

0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 

7 
FIGURE 11. Disturbance u-velocity and temperature phase distributions for Prandtl 

number = 0.733, uniform flux base flow and s(0) = 0 (&* = 03). 

in the region of the outer edge of the thermal boundary layer. The distance in 
which this phase change occurs depends upon the magnitude of G* for the 
thermal boundary condition that s(0)  = 0. Between the range of G* from 77 to 
120 this is not the case for the boundary condition that s'(0) = 0. It would at 
first appear that this phase reversal is due to an uncoupling of the flow due to the 
fact that the base flow temperature distribution is reduced to approximately 5 yo 
of its maximum. However, this same effect was predicted by Schlichting (1933), 
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and was observed experimentally by Schubauer & Skramstad (1948) for a forced 
flow in which no coupling is present. The location of this sudden phase change 
corresponds to the dip in the disturbance u-velocity distribution. 

-- 2n 1 1  

0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 

1 

I I I I I I 

~ 

0 1 .o 2.0 3.0 4.0 5.0 6.0 7.0 

1 
FIGURE 12. Disturbance u-velocity and temperature phase distributions for Prandtl 

number = 0.733, uniform flux base flow and s'(0) = 0. 

5. Comparison of theory and existing experimental results 
Figure 14 shows a comparison of the neutral stability curves for the coupled 

results of the present analysis for air (with Pr = 0.733) with the uncoupled 
resultst previously obtained by Polymeropoulos & Gebhart ( 1966), Nachtsheim 

t The isothermal wall results of Nachtsheim (1963) and Kurtz & Crandall (1962) have 
been renormalized according to the technique of Polymeropoulos & Gebhart (1966). 
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(1963) and Kurtz & Crandall (1962). The effect of two different base flows on 
uncoupled solutions is relatively small. This is expected, due to the similarity of 
the temperature and velocity profiles for the two cases. However, the influence 

I I I I I 

- 0  1 .o 2.0 3.0 4.0 5.0 6.0 

7 

I I I I I 

0 1.0 2.0 3.0 4.0 5.0 6.0 

?1 

FIGURE 13. Disturbance u-velocity and temperature phase distributions for Prandtl 
number = 6.9, G* = 65, uniform flux base flow and s'(0) = 0 (&* = 0). 

of the temperature coupling in the disturbances depends strongly upon the dis- 
turbance-temperature boundary condition at the wall. It can be seen that, for the 
same disturbance-temperature boundary condition [s(O) = 01, the influence of 
the base flow upon the neutral stability curve is small for this Prandtl number. 
In both flow cases the temperature-coupling results in a distinctive departure 
from the uncoupled case for LY: less than 0.4. Above this value, the coupled curves 
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resemble the uncoupled curves. For large values of aG* the coupled and un- 
coupled curves appear to become asymptotic. 

However, the disturbance temperature boundary condition has a very pro- 
nounced effect on the neutral curve. For zero relative thermal capacity the 
temperature coupling appears to dominate the eigenvalue dependence upon G* 
over the whole range. The curve does not even become asymptotic to the un- 
coupled curve (at least for G* < 173). 

I I I I I I I I I I I I 

I I I 1 I I I I I 
0 20 40 60 80 100 120 140 160 180 200 220 

G* 

FIGURE 14. Comparison between neutral curves for isothermal wall and uniform flux base 
flows in air [the isothermal wall results have been re-normalized according to Poly- 

Polymeropoulos & Gebhart (1966), uniform flux, uncoupled; -. -. , Nachtsheim (1963), 
isothermal wall, coupled ; - - - , Nachtsheim (1963), isothermal wall, uncoupled; 
_---  , Kurtz & Crandall (1962), isothermal wall, uncoupled. 

meropoulos & Gebhart (1966)l. -, present calculations, uniform f l u ,  coupled; - - - -, 

The neutral curves calculated for higher Prandtl numbers (from 3 to 6.9) do 
not exhibit this limiting behaviour in the range of the solution. Figure 15 com- 
pares the uniform flux base flow results for Prandtl numbers of 5.0 and 6-9 and 
zero relative thermal capacity [s'(O) = O j  with the results of Nachtsheim 
(1963) for isothermal wall base flow [and s(0)  = 01. The uncoupled neutral curve 
of Nachtsheim is not within the scale of this figure; the nose of this curve is 
located a t  G* = 500 and a = 0.396. (The isothermal-wall curve is re-normalized 
as discussed in the footnote on page 677 above). The effect of temperature- 
coupling is very pronounced in this Prandtl number range, resulting in a displace- 
ment of the nose of the isothermal-wall neutral curve by a factor of 10 in G*. 

The uniform-flux base flow results shown in figure 15 reflect not only the effect 
of the base flow, but also the effect of the new disturbance temperature boundary 
condition. While these changes result in an offset of the neutral curve, they do not 
cause a complete change in the shape of the curve as in the case of P r  = 0.733. 

The experimental results of Polymeropoulos & Gebhart (1967) are compared 
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with the present calculated results for air in figure 16. The data show clearly the 
effect of the disturbance temperature boundary condition. The experiment was 
conducted in pressurized nitrogen, with an electrically heated thin foil being 
used to generate the flow. Using both resistance thermometers and an inter- 
ferometer, it  was established that the foil temperature distribution corresponded 
t o  the theoretical results of Sparrow & Gregg (1956) for a uniform flux surface. 

1 .o 

0.8 

0.6 

CL 

0.4 

0.2 

0 

I I I I I I 

Present calculations, uniform flux, 
coupled, s’(0) = 0 

Isothermal wall, 
coupled, s(0) = 0 
Nachtsheim (1963) 

0 20 40 60 80 100 120 140 

G* 

FIGURE 15. Comparison between neutral curves for isothermal wall and uniform flux base 
flows in higher Prandtl number fluids [the isothermal wall results have been renormalized 
according to Polymeropoulos & Gebhart (19GG)I. 

Thus, it can be concluded for those experiments that the base flow was that of a 
uniform-flux surface condition. It is clear from figure 16, however, that the data 
is quite different from the solution for a boundary condition of zero disturbance 
flux at  the plate. 

Values of the storage parameter, Q*) were computed for the data of 
Polymeropoulos & Gebhart (1967). It was found that for a less than 0.4, &* 
was greater than 0.04. As a result, these data are expected to (and do at  low a) 
lie in the region bounded by the curves for Q* = 0-03 and Q* = 00. 

It is apparent, therefore, that although the base flow was that of a uniform 
flux plate, the plate thermal capacity was sufficiently large compared to that of 
the pressurized nitrogen, that the wall almost, but not completely, damped out 
the disturbance temperature fluctuations. 

The fringe amplitude distribution given in Polymeropoulos (1966) cannot be 
compared to the calculated disturbance temperature amplitude distributions 
directly, since the temperature change is proportional to the relative fringe shift. 
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a 

G* 

FIGURE 16. Comparison of experimental results of Polymeropoulos & Gebhart (1966) with 
theoretical neutral curves for air. A, experimental data, Polymeropoulos & Gebhart (1967). 

i 

Theoretical results Pr = 0.733 
/ F* = 167, 2 = 0.72 

0 1 .o 2.0 3.0 4.0 5.0 6.0 

7 
FIGURE 17. Comparison of experimental disturbance temperature distribution with 
theoretical distribution for air. A, experimental data. Pr = 0.72, G* = 200, tl. = 0.64, 
Polymeropoulos (1966, figure 40a). 
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Thus the fringe spacing must also be measured, and the fringe amplitude be 
divided by the average fringe spacing in order to obtain an experimental 
disturbance-temperature distribution. 

One negative was available from the data of Polymeropoulos [figure 40a of 
Polymeropoulos (1966)l and it was remeasured. The results are shown in figure 17, 
along with the theoretical results for the s(0)  = 0 boundary condition. The actual 
value of Q* for these experimental data is 0.02. The theoretical solutions for 
Q* = 0.03 were not continued in the G* range of these data, so that the com- 
parison is made with the theory for &* = 03. Figures 9 and 10 show, however, 
that the disturbance temperature amplitude distribution is very nearly the same 
for Q* = 0.03 and &* = co. The agreement between the data and the theory is 
remarkably good. 

6. Conclusions 
This study follows directly on other recent ones and collectively they greatly 

increase our understanding of conditions for laminar instability in external 
natural convection flows. Until recently very little was known about such 
stability because of the complexity of the theoretical equations and because of 
the ill-definition and rudimentary nature of the few previous experimental 
studies. 

Following the first complete solution by Nachtsheim (1963) and the first 
critical experiments, reported by Polymeropoulos & Gebhart (1967)) it  was 
evident that alinear-disturbance theory, similar to that which has beenso success- 
ful for boundary regions in forced flow, is equally applicable to the more compli- 
cated natural convection flows. 

The present paper examines the questions of laminar instability in boundary 
region nat(ura1 convection flow more closely. The weak nature of such flow 
processes, the inevitable coupling of velocity and temperature disturbances 
through buoyancy, the primacy of the fluid Prandtl number as a parameter, and 
the expected critical thermal capacity coupling between the surface and the 
flow disturbances pose questions which this paper considers, through the 
application of stability theory. 

Since many natural convection flows result more nearly from a surface which 
uniformly generates heat than from an isothermal surface, the effect of different 
base flows on stability characteristics was determined. For the Prandtl number 
typical of gases, and non-zero values of wall relative thermal capacity, the effect 
is small. For larger Prandtl numbers, however, the effect! is perhaps more im- 
portant, probably through the changing relation between base-flow velocity and 
temperature boundary region thicknesses. 

In  many natural convection flows the thermal capacity of the element 
generating the flow is sufficiently small so that it couples in an important way 
with the thermal storage changes in the flow due to disturbances. Allowing for 
this effect amounts to modifying the boundary conditions for the stability 
equations. A thermal capacity parameter arises which is similar to that already 
shown to be crucial in describing transients in natural convection flows. The use 
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of this more realistic type of boundary condition, for practical configurations, 
results in variability in the conditions for incipient laminar instability. The 
effects are very large. Through the use of such information, the temperature 
coupling evidence of previous experimentation is more completely explained. 

Much information is presented concerning distributions of disturbance 
quantities across the boundary regions and their changes with Prandtl number 
and relative thermal capacity. The locations of disturbance maxima and distri- 
butions of phase angle are very interesting, especially when compared with the 
classical ideas, such as the critical layer, which were prevalent in the earlier 
approximate solutions of the stability equations. An experimentally determined 
disturbance temperature distribution is compared with one calculated from 
stability theory, with good agreement. 

All stability analysis to date in natural convection flows has been carried in 
terms of two-dimensional disturbances. In  the appendix it is shown that, for 
temperature and velocity disturbances coupling through buoyancy, the flow is 
unstable at  lower Grashof number for two-dimensional than for three-dimen- 
sional disturbances. 

The authors wish to express appreciation for National Science Foundation 
support in this research, and in preparation of the paper, under research grants 
GI?-127 and GK-1963. They would also like to thank Dr R. P. Dring and Mr C. A. 
Hieber for help and advice in computations and in paper preparation. 

Appendix. Extension of Squires theorem to coupled disturbances in 
natural convection 

It has been shown by Squire (1933) for forced flow that two-dimensional 
disturbances will develop at a, lower Reynolds number than three-dimensional 
disturbances. It will be shown that this result can be extended to the case of 
temperature-coupled natural convection disturbances. 

For this purpose, consider the natural convection flow over a vertical flat 
plate of infinite span with the co-ordinate system as shown in figure 1. The 
governing linearized perturbation equations, assuming one-dimensional base 
flow, can be reduced to 

and 
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Q =---. Q =----. Q =-- -  
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aw av au aw av au 
z ay a x y  az ax’ ax ay‘ 

where 

The disturbance quantities are assumed to be periodic in x, x and 7 so that 

u(x, y, z, ‘i) = ~ ( y )  exp i(ax + 52 - Z T ) ,  etc. 

Substituting these quantities in the governing equations and normalizing as 
before, the following equations for v and t are obtainedt 

1 d2v d2v 
(F‘ - c )  [ dy2 - (a2 + b2) w - 2(a2 + b2) - + (a2 + b2)2v 

dy2 
1 at -F”’v+-- = 0 (A 6) 

d* drl 

and H’v+iaP’-ct = __ (A 71 

With the further substitutions 

v = -ia@ and t = s, 

(A 6) and (A 7) can be written as 
z 

aG* 
(F’ - c) [a’’ - (a2 + b2)@] - F’”@ = - [aiv - 2(a2 + b2)Q’’ + (a2 + b2)2@ + s’] 

(A 8) 

(A 9) 
i 

and 
a@* Pr 

These two equations are identical to the corresponding two-dimensional 
equations if 

a2 = a2+b2 

and aG* = ai?*. 

(F’ - c) s - H’ a = - ___ [s” - (a2 + 6 2 )  81. 

Since a, b and a are all real for a neutral disturbance, the first equation requires 
that a: > a and hence the second equation shows that G* < i?*, i.e. that the two- 
dimensional critical Grashof parameter is smaller than the corresponding three- 
dimensional Grashof parameter. As a result, for an infinite span, the flow will 
be most unstable for the two-dimensional disturbances. 

This fact has been observed experimentally in pressurized nitrogen by Poly- 
meropoulos (1966) and in 0.65 ctsk. silicone by the &st author, Knowles (19671, 
for foil aspect ratios of approximately 6 : 1. 
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